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Abstract

Transfer learning has attracted a lot of attention
in the past decade. One crucial research issue in
transfer learning is how to find a good representa-
tion for instances of different domains such that the
divergence between domains can be reduced with
the new representation. Recently, deep learning
has been proposed to learn more robust or higher-
level features for transfer learning. However, to the
best of our knowledge, most of the previous ap-
proaches neither minimize the difference between
domains explicitly nor encode label information in
learning the representation. In this paper, we pro-
pose a supervised representation learning method
based on deep autoencoders for transfer learning.
The proposed deep autoencoder consists of two
encoding layers: an embedding layer and a label
encoding layer. In the embedding layer, the dis-
tance in distributions of the embedded instances be-
tween the source and target domains is minimized
in terms of KL-Divergence. In the label encoding
layer, label information of the source domain is en-
coded using a softmax regression model. Extensive
experiments conducted on three real-world image
datasets demonstrate the effectiveness of our pro-
posed method compared with several state-of-the-
art baseline methods.

1 Introduction
Transfer learning focuses on adapting knowledge from an
auxiliary source domain to a target domain with little or with-
out any label information to build a target prediction model
of good generalization performance. In the past decade, a lot
of attention has been paid on developing methods to trans-
fer knowledge effectively across domains [Pan and Yang,
2010]. A crucial research issue in transfer learning is how
to reduce difference between the source and target domains
while preserving original data properties. Among different
approaches to transfer learning, the feature-based transfer
learning methods have proven to be superior for the scenar-
ios where original raw data between domains are very differ-
ent while the divergence between domains can be reduced.

A common objective of feature-based transfer learning meth-
ods is to learn a transformation to project instances from dif-
ferent domains to a common latent space where the differ-
ence of the projected instances between domains can be re-
duced [Blitzer et al., 2006; Dai et al., 2007a; Pan et al., 2008;
2011; Zhuang et al., 2014].

Recently, because of the power on learning high-level
features, deep learning has been applied to transfer learn-
ing [Xavier and Bengio, 2011; Chen et al., 2012; Joey
Tianyi Zhou and Yan, 2014]. Xavier and Bengio [2011] pro-
posed to learn robust features with stacked denoising autoen-
coders (SDA) [Vincent et al., 2010] on the union of data of a
number of domains. The learned new features are considered
as high-level features, and used to represent both the source
and target domain data. Finally, standard classifiers, e.g.,
support vector machines (SVMs), are trained on the source
domain labeled data with the new representations, and make
predictions on the target domain data with the new represen-
tations. Chen et al. [2012] extended the work of SDA, and
proposed the marginalized SDA (mSDA) for transfer learn-
ing. mSDA addresses two limitations of SDA: highly com-
putational cost and lack of scalability with high-dimensional
features. More recently, Joey Tianyi Zhou and Yan [2014]
proposed a deep learning approach to heterogeneous transfer
learning based on an extension of mSDA, where instances in
the source and target domains are represented by heteroge-
neous features. In their proposed method, the bridge between
the source and target domains with heterogeneous features is
built based on the corresponding information of instances be-
tween the source and target domains, which is assumed to be
given in advance.

Though the goal of previous deep-learning-based methods
for transfer learning is to learn a more powerful feature rep-
resentation to reduce the difference between domains, most
of them did not explicitly minimize the distance between do-
mains when learning the representation. Therefore, the reduc-
tion in difference between domains is not guaranteed with the
learned feature representation. Furthermore, most previous
methods are unsupervised, and thus fail to encode discrimi-
native information into the representation learning.

In this paper, we propose a supervised representation learn-
ing method for transfer learning based on deep autoencoders.
Specifically, the proposed method, named Transfer Learning
with Deep Autoconders (TLDA), is shown in Figure 1. In
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Figure 1: The framework of TLDA

TLDA, there are two encoding and decoding layers, respec-
tively, where the encoding and decoding weights are shared
by both the source and target domains. The first encoding
layer is referred to as the embedding layer, where the distri-
butions of the source- and target- domain data are enforced to
be similar by minimizing the KL divergence [Kullback, 1987]
of the embedded instances between domains. The second en-
coding layer is referred to as the label encoding layer, where
the source domain label information is encoded using a soft-
max regression model [Friedman and Rob, 2010], which can
naturally handle multiple classes. Note that, in the second en-
coding layer, the encoding weights are also used for the final
classification model. In summary, there are three key features
in our proposed TLDA:

1. The encoding and decoding weights are shared across
different domains for knowledge transfer.

2. The distributions of two domains are enforced to be sim-
ilar in the embedding space.

3. The label information is encoded.

2 Preliminary Knowledge
In this section, we first review some preliminary knowledge
that is used in our proposed framework. Note that frequently
used notations are listed in Table 1, and unless otherwise
specified, all the vectors are column vectors.

2.1 Autoencoders
The basic framework of autoencoder [Bengio, 2009] is a feed
forward neural network with an input layer, an output layer
and one or more hidden layers between them. An autoen-
coder framework usually includes the encoding and decod-
ing processes. Given an input x, autoencoder first encodes it

Table 1: The Notation and Denotation
Ds, Dt The source and target domains
ns The number of instances in source domain
nt The number of instances in target domain
m The number of original features
k The number of nodes in embedding layer
c The number of nodes in label layer

x
(s)
i , x(t)

i The i-th instance of source and target domains
x̂
(s)
i , x̂(t)

i The reconstructions of x(s)
i and x(t)

i

y
(s)
i The label of instance x(s)

i

ξ
(s)
i , ξ(t)i The hidden representations of x(s)

i and x(t)
i

ξ̂
(s)
i , ξ̂(t)i The reconstructions of ξ(s)i and ξ(t)i

z
(s)
i , z(t)i The hidden representations of ξ(s)i and ξ(t)i
Wi, bi Encoding weight and bias matrix for layer i
W

′

i , b
′

i Decoding weight and bias matrix for layer i
> The transposition of a matrix
◦ The dot product of vectors or matrixes

to one or more hidden layers through several encoding pro-
cesses, then decodes the hidden layers to obtain an output x̂.
Autoencoder tries to minimize the deviation of x̂ from the in-
put x, and the process of autoencoder with one hidden layer
can be summarized as:

Encoding : ξ = f(W1x+ b1) (1)

Decoding : x̂ = f(W
′

1ξ + b
′

1) (2)
where f is a nonlinear activation function (the sigmoid func-
tion is adopted in this paper), W1 ∈Rk×m and W

′

1 ∈Rm×k

are weight matrices, b1 ∈Rk×1 and b
′

1 ∈Rm×1 are bias vec-
tors, and ξ ∈ Rk×1 is the output of the hidden layer. Given
a set of inputs {xi}ni=1, the reconstruction error can be com-
puted by

∑n
i=1 ‖x̂i − xi‖2. The goal of autoencoder is to

learn the weight matrices W1 and W
′

1 , and the bias vectors
b1 and b

′

1 by minimizing the reconstruction error as follows,

min
W1,b1,W

′
1 ,b

′
1

n∑
i=1

‖x̂i − xi‖2 (3)

2.2 Softmax Regression
The softmax regression model [Friedman and Rob, 2010] is
a generalization of the logistic regression model for multi-
class classification problems, where the class label y can take
more than two values, i.e., y ∈ {1, 2, ..., c} (where c ≥ 2 is
the number of class labels.). For a test instance x, we can
estimate the probabilities of each class that x belongs to as
follows,

hθ(x) =


p(yi = 1|x;θ)
p(yi = 2|x;θ)

...
p(yi = c|x;θ)

=
1∑c

j=1 e
θ>
j x


eθ

>
1 x

eθ
>
2 x

...
eθ

>
c x

 (4)

where
∑c

j=1 e
θ>
j x is a normalized term, and θ1, · · · ,θc are

the model parameters.
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Given the training set {xi, yi}ni=1, yi ∈ {1, 2, ..., c}, the
solution of softmax regression can be derived by minimizing
the following optimization problem,

min
θ

− 1

n

n∑
i=1

c∑
j=1

1{yi = j} log
eθ

>
j xi∑c

l=1 e
θ>
l xi

 , (5)

where 1{·} is an indicator function, whose value is 1 if the
expression is true, otherwise 0. Once the model is trained,
one can compute the probability of instance x belonging to a
label j using Eq. (4), and assign its class label as

y = max
j

eθ
>
j x∑c

l=1 e
θ>
l x
. (6)

2.3 Kullback-Leibler Divergence
Kullback-Leibler (KL) divergence [Kullback, 1987], also
known as the relative entropy, is a non-symmetric measure of
the divergence between two probability distributions. Given
two probability distributions P ∈ Rk×1 and Q ∈ Rk×1, the
KL divergence of Q from P is the information lost when Q
is used to approximate P [Liddle et al., 2010], defined as
DKL(P ||Q) =

∑k
i=1P (i) ln(P (i)

Q(i) ). In this paper, we adopt
the symmetrized version of KL-divergence, KL(P ,Q) =
DKL(P ||Q) + DKL(Q||P ), to measure the divergence for
classification problems, Smaller value of KL divergence in-
dicates more similar of two distributions. Thus, we use the
KL divergence to measure the difference between two data
domains when they are embedded to the same latent space.

3 Transfer Learning with Deep Autoencoders
3.1 Problem Formalization
Given two domainsDs, andDt, whereDs={x(s)

i , y
(s)
i }|

ns
i=1

is the source domain labeled data with x(s)
i ∈ Rm×1, and

y
(s)
i ∈ {1, ..., c}, while Dt = {x(t)

i }|
nt
i=1 is the target do-

main with unlabeled data. Here, ns and nt are the numbers
of instances inDs andDt, respectively.

As shown in Figure 1, there are three factors to be taken
into consideration for representation learning. Therefore, the
objective to be minimized in our proposed learning frame-
work for transfer learning can be formalized as follows,

J = Jr(x, x̂) + αΓ (ξ(s), ξ(t)) + βL(θ, ξ(s))

+ γΩ(W , b,W
′
, b′). (7)

The first term of the objective is the reconstruction error for
both source and target domain data, which can be defined as,

Jr(x, x̂) =
∑

r∈{s,t}

nr∑
i=1

||x(r)
i − x̂

(r)
i ||

2, (8)

where

ξ
(r)
i = f(W1x

(r)
i + b1), z

(r)
i = f(W2ξ

(r)
i + b2), (9)

ξ̂
(r)
i = f(W

′

2z
(r)
i + b

′

2), x̂
(r)
i = f(W

′

1 ξ̂
(r)
i + b

′

1). (10)

The first hidden layer is called the embedding layer with
an output ξ ∈ Rk×1 of k nodes (k ≤ m), a weight matrix

W1 ∈ Rk×m, and a bias vector b1 ∈ Rk×1. The output
of first layer is the input for the second hidden layer. The
second hidden layer is called the label layer with an output
z ∈ Rc×1 of c nodes (equals to the number of class label),
a weight matrix W2 ∈ Rc×k, and a bias vector b2 ∈ Rc×1.
Here, the softmax Regression is used as the regularization
item on source domain to incorporate label information. In
addition, the output of the second layer is used as the pre-
diction results for target domain. The third hidden layer ξ̂
is the reconstruction of the embedding layer with the cor-
responding weight matrix and bias vector ξ̂ ∈ Rk×1 and
W

′

2 ∈ Rk×c, b
′

2 ∈ Rk×1. Finally, x̂ is the reconstruction
of x with x̂ ∈ Rm×1,W

′

1 ∈ Rm×k, and b
′

1 ∈ Rm×1.
The second term in the objective Eq. (7) is the KL diver-

gence of embedded instances between the source and target
domains, which can be written as

Γ (ξ(s), ξ(t)) = DKL(Ps||Pt) +DKL(Pt||Ps), (11)
where

P
′

s =
1

ns

ns∑
i=1

ξ
(s)
i , Ps =

P
′
s∑
P ′

s

, (12)

P
′

t =
1

nt

nt∑
i=1

ξ
(t)
i , Pt =

P
′
t∑
P

′
t

. (13)

The goal of minimizing the KL divergence of the embedded
instances between the source and target domains is to ensure
the source and target data distributions to be similar in the
embedding space.

The third term in the objective Eq. (7) is the loss function
of softmax regression to incorporate the label information of
the source domain into the embedding space. Specifically,
this term can be formalized as follows,

L(θ, ξ(s)) = − 1

ns

ns∑
i=1

c∑
j=1

1{y(s)i = j} log
eθ

>
j ξ

(s)
i∑c

l=1 e
θ>
l ξ

(s)
i

,

where θ>j (j ∈ {1, ..., c}) is the j-th row ofW2.
Finally, the last term in the objective Eq. (7) is an regular-

ization on model parameters, which is defined as follows,

Ω(W , b,W
′
, b′) = ‖W1‖2+‖b1‖2 + ‖W2‖2 + ‖b2‖2

+ ‖W
′

1‖2+‖b
′

1‖2 + ‖W
′

2‖2 + ‖b
′

2‖2.
The trade-off parameters α, β, and γ are positive constants

to balance the effect of different terms to the overall objective.

3.2 Model Learning
The minimization problem of Eq. (7) with respect toW1, b1,
W2, b2, W

′

2 , b
′

2, W
′

1 , and b
′

1 is an unconstrained optimiza-
tion problem. To solve this problem, we adopt the gradient
descent methods. For succinctness, we first introduce some
intermediate variables as follows.

A
(r)
i =

(
x̂
(r)
i − x

(r)
i

)
◦ x̂(r)

i ◦
(

1− x̂(r)
i

)
,

B
(r)
i = ξ̂

(r)
i ◦

(
1− ξ̂(r)i

)
,

C
(r)
i = z

(r)
i ◦

(
1− z(r)i

)
,

D
(r)
i = ξ

(r)
i ◦

(
1− ξ(r)i

)
.
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The partial derivatives of the objective Eq. (7) w.r.t. W1,
b1,W2, b2,W

′

2 , b
′

2,W
′

1 , and b
′

1 can be computed as follows
respectively,

∂J
∂W1

=

ns∑
i=1

2W
′>
1 A

(s)
i ◦ (W

>
2 (W

′>
2 B

(s)
i ◦ C

(s)
i )) ◦D(s)

i x
(s)>
i

+

nt∑
i=1

2W
′>
1 A

(t)
i ◦ (W

>
2 (W

′>
2 B

(t)
i ◦ C

(t)
i )) ◦D(t)

i x
(t)>
i

+
α

ns

ns∑
i=1

D
(s)
i ◦ (1−

Pt

Ps
+ ln(

Ps

Pt
))x

(s)>
i (14)

+
α

nt

nt∑
i=1

D
(t)
i ◦ (1−

Ps

Pt
+ ln(

Pt

Ps
))x

(t)>
i + 2γW1

− β

ns

ns∑
i=1

c∑
j=1

1{y(s)i = j}(W>
2j −

W>
2 e

W2ξ
(s)
i∑

l e
W2lξ

(s)
i

)

◦D(s)
i x

(s)>
i

∂J
∂W2j

=

ns∑
i=1

2W
′>
2j (W

′>
1 A

(s)
i ◦B

(s)
i ) ◦ C(s)

ij ξ
(s)>
i

+

nt∑
i=1

2W
′>
2j (W

′>
1 A

(t)
i ◦B

(t)
i ) ◦ C(t)

ij ξ
(t)>
i (15)

− β

nsj
(

nsj∑
i=1

ξ
(s)>
i −

ns∑
i=1

eW2jξ
(s)
i∑

l e
W2lξ

(s)
i

ξ
(s)>
i ) + 2γW2j ,

∂J
∂W

′
2

=

ns∑
i=1

2W
′>
1 A

(s)
i ◦B

(s)
i z

(s)>
i + 2γW

′
2

+

nt∑
i=1

2W
′T
1 A

(t)
i ◦B

(t)
i z

(t)>
i , (16)

∂J
∂W

′
1

=

ns∑
i=1

2A
(s)
i ξ̂

(s)>
i +

nt∑
i=1

2A
(t)
i ξ̂

(t)>
i + 2γW

′
1 , (17)

where W2j is the j-th row of W2, and nsj is the number
of instance with the label j in source domain. As the partial
derivatives of the objective Eq.(7) w.r.t. b1, b2, b

′

2, b
′

1 are
very similar to those of W1, W2, W

′

2 , W
′

1 , respectively, we
omit the details due to the limit of space. Based on the above
partial derivatives, we develop an alternatively iterating algo-
rithm to derive the solutions by using the following rules,

W1 ←W1 − η
∂J
∂W1

, b1 ← b1 − η
∂J
∂b1

,

W
′

1 ←W
′

1 − η
∂J
∂W

′
1

, b
′

1 ← b
′

1 − η
∂J
∂b

′
1

,

W2 ←W2 − η
∂J
∂W2

, b2 ← b2 − η
∂J
∂b2

,

W
′

2 ←W
′

2 − η
∂J
∂W

′
2

, b
′

2 ← b
′

2 − η
∂J
∂b

′
2

,

(18)

where η is the step length, which determines the speed of
convergence. The details of the proposed algorithm is sum-
marized in Algorithm 1. Note that the proposed optimization

problem is not convex, and thus there is no guarantee on ob-
taining an optimal global solution. To achieve a better local
optimal solution of the proposed gradient descent approach,
we first run SAE on all source and target domain data, and
then use the output of SAE to initialize the encoding and de-
coding weights.

Algorithm 1 Transfer Learning with Deep Autoencoders
(TLDA)

Input: Given one source domainDs = {x(s)
i , y

(s)
i }|

ns
i=1, and

one target domain Dt = {x(t)
i }|

nt
i=1, trade-off parameters α,

β, γ, the number of nodes in embedding layer and label layer,
k and c.
Output: Results of label layer z and embedded layer ξ.

1. Initialize W1, W2, W
′

2 , W
′

1 and b1, b2, b
′

2, b
′

1 by
Stacked Autoencoders performed on both source and
target domains;

2. Compute the partial derivatives of all variables accord-
ing to Eqs. (14), (15) (16) and (17);

3. Iteratively update the variables using Eq. (18);
4. Continue Step2 and Step3 until the algorithm converges;
5. Computing the embedding layer ξ and label layer z us-

ing (9), and then construct target classifiers as described
in Section 3.3.

3.3 Classifier Construction
After all the parameters are learned, we can construct clas-
sifiers for the target domain in two ways. The first way is
directly to use the output of the second hidden layer. That
is, for any instance x(t) in the target domain, the output
of the label layer z(t) = f(W2ξ

(t) + b2) can indicate the
probabilities of x(t) which class it belongs to. We choose
the maximum probability and the corresponding label as the
prediction. The second way is to apply standard classifica-
tion algorithms, e.g., logistic regression(LR) [Snyman, 2005;
Friedman and Rob, 2010] to train a classifier for source do-
main in the embedding space. Then the classifier is applied to
predict class labels for target domain data. These two meth-
ods are denoted as TLDA1 and TLDA2, respectively.

4 Experimental Evaluation
In this section, we conduct extensive experiments on three
real-world image data sets to show the effectiveness of the
proposed framework. Two of the three datasets are on binary
classification, and the rest one is on multi-class classification.

4.1 Datasets and Preprocessing
ImageNet Data Set1 contains five domains, i.e., D1 (ambu-
lance+scooter), D2 (taxi+scooter), D3 (jeep+scooter), D4
(minivan+scooter) and D5 (passenger car+scooter). Data
from different domains come from different categories, e.g.,
taxi from D2 and jeep from D3, therefore this dataset is

1http://www.image-net.org/download-features
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Table 2: Description of the ImageNet dataset
D1 D2 D3 D4 D5

#positive instance 1510 1326 1415 1555 986
#negitive instance 1427 1427 1427 1427 1427

#features 1000 1000 1000 1000 1000

proper for transfer learning study. To construct classification
problems, we randomly choose two from the five domains,
where one is considered as the source domain and the other
is considered as the target domain. Therefore, we construct
20 (P 2

5 ) transfer learning classification problems. Statistics
of this dataset is shown in Table 2.
Corel Data Set2 [Zhuang et al., 2010] includs two different
top categories, flower and traffic. Each top category further
consists of four subcategories. We use flower as positive in-
stances and traffic as negative ones. To construct the trans-
fer learning classification problems, we randomly select one
subcategory from flower and one from traffic as the source do-
main, and then choose another subcategory of flower and an-
other one of traffic from the remaining subcategories to con-
struct the target domain. In this way, we can construct 144
(P 2

4 · P 2
4 ) transfer learning classification problems.

Leaves Data Set [Mallah and Orwell, 2013] includes 100
plant species that are divided into 32 different genera, and
each specie has 16 instances. We choose four genuses with
more than four plant species to construct 4-class classification
problems, and use 64 shape descriptor features to represent an
instance. Each genus is regarded as a domain. Similar to the
construction of ImageNet dataset, we can construct 12 (P 2

4 )
4-class classification problems.

4.2 Baseline Methods
We compare our methods with the following baselines,

• The supervised learning algorithm Logistic Regression
(LR) [Friedman and Rob, 2010] without transfer learn-
ing.

• Transfer component analysis(TCA) [Pan et al., 2011],
which aims at learning a low-dimensional representation
for transfer learning. Here we also use Logistic Regres-
sion as the basic classifier.

• Transfer learning based on stacked autoencoders, the
marginalized Stacked Denoising Autoencoders (mSDA)
method [Chen et al., 2012].

Implementation Details: After some preliminary experi-
ments, we set α = 0.5, β = 0.5, γ = 0.00001 and k = 10
for the ImageNet and Corel datasets, while β = 0.05, k = 5
and γ = 0.0001 for the Leaves dataset. For mSDA, we use
the authors’ source code3 and adopt the default parameters as
reported in [Chen et al., 2012]. For TCA, the number of la-
tent dimensions is carefully tuned, e.g., for the Corel dataset,
the number is sampled from [10, 80] with interval 10, and its
best results are reported.

2http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features.
3http://www.cse.wustl.edu/ mchen/

0 5 10 15 20
40

50

60

70

80

90

100

Problem instances

A
cc

ur
ac

y(
%

)

 

 

LR
TCA
mSDA
TLDA1

TLDA2

Figure 2: Classification accuracy on the ImageNet dataset

Table 3: Average results (%) on three data sets
LR TCA mSDA TLDA1 TLDA2

ImageNet Data Set
Left 67.0 64.3 67.6 83.4 87.4
Right 81.2 76.3 84.1 89.0 90.2
Total 80.5 75.7 83.3 88.7 90.1

Corel Data Set
Left 61.7 65.4 70.5 71.1 74.0
Right 80.1 82.0 75.4 83.2 83.0
Total 74.8 76.5 74.0 79.6 80.4

Leaves Data Set
Left 51.9 65.9 47.2 64.1 57.8
Right 75.0 89.8 59.4 91.4 89.8
Total 55.7 69.9 49.2 68.6 63.2

4.3 Experimental Results
All the results of these three data sets are shown in Figure 2
and Table 3. Figure 2 shows the results over the 20 classi-
fication problems on the ImageNet dataset, in which x-axis
represents the index of the problems, and y axis represents
the corresponding accuracy. From the figure, we have the fol-
lowing observations,
• TLDA is significantly better than LR on every problem,

which indicates the efficiency of our proposed transfer
learning framework.
• TLDA performs better than TCA, which shows the su-

periority of applying deep autoencoders to learn a good
representation for transfer learning. TLDA also outper-
forms mSDA, which indicates the effectiveness of incor-
porating label information from source domain.
• LR performs slightly worse than mSDA, even better than

TCA. This may be because on constructed cross-domain
classification problems, it is not easy to make knowledge
transfer success. This observation again validates the
effectiveness of our methods.

We also divide the constructed problems into two groups:
a first group consists of problems on which the classification
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Figure 3: The Study of Parameter Influence on TLRA1

accuracy of LR is lower than 70%, and the rest problems are
considered as a second group. The lower of classification
accuracy of LR in some certain indicate the higher degree
of the difficulty in knowledge transfer. The averaged accu-
racy of these two group as well as the averaged accuracy over
all problems on the three three datasets are reported in Ta-
ble 3. We can find that the proposed methods perform better
than all the compared algorithms on the both groups of prob-
lems, except for that on the Leaves dataset, the performance
of TLDA1 is comparable with that of TCA.

4.4 Parameter Sensitivity
In this section, we investigate the influence of the param-
eters α, β and k in the objective Eq.(7). In this exper-
iment, when tuning one parameter, the values of the rest
two are fixed. Specifically, α and β are sampled from
{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}, and k is selected from
{10, 20, ..., 80}. We select 10 out of the 144 problems on the
Corel dataset for experiment, and report the results in Fig-
ure 3. From the figure, we can observe that the performance
of TLDA1 is relatively stable to the selection of α and β,
while it decreases dramatically when the value of k is large.
Thus we set α = 0.5, β = 0.5 and k = 10 to achieve good
and stable results for the ImageNet and Corel datasets.

5 Related Work
Poultney et al. [2006] proposed an unsupervised method with
an energy-based model for learning sparse and overcomplete
features. In their method, the decoder produces accurate re-
constructions of the patches, while the encoder provides a fast
prediction of the code without the need for any particular pre-
processing of the inputs. Vincent and Manzagol [2008] pro-
posed Denoising autoencoders to learn a more robust repre-
sentation from an artificially corrupted input, and further pro-
posed Stacked denoising autoencoders [Vincent et al., 2010]
to learn useful representations through a deep network.

Transfer learning has attracted much attention in the past
decade. To reduce the difference between domains, two cate-
gories of transfer learning approaches have been proposed.
One is based on the instance level, which aims to learn
weights for the source domain labeled data, such that the re-
weighted source domain instances look similar to the target
domain data instances [Dai et al., 2007b; Gao et al., 2008;

Xing et al., 2007; Jiang and Zhai, 2007; Zhuang et al., 2010;
Crammer et al., 2012]. The other is based on the fea-
ture representation level, which aims to learn a new fea-
ture representation for both the source and target domain
data, such that with the new feature representation the differ-
ence between domains can be reduced [Blitzer et al., 2006;
Dai et al., 2007a; Pan et al., 2008; Si et al., 2010; Pan
et al., 2011; Xavier and Bengio, 2011; Chen et al., 2012;
Zhuang et al., 2014].

Among most feature-based transfer learning methods, only
a few methods aim to minimize the difference between
domains explicitly in learning the new feature representa-
tion. For instance, maximum mean discrepancy embedding
(MMDE) [Pan et al., 2008] and transfer component analy-
sis (TCA) [Pan et al., 2011] try to minimize the distance in
distributions between domains in a kernel Hilbert space, re-
spectively. The transfer subspace learning framework pro-
posed by [Si et al., 2010] tries to find a subspace, where the
distributions of the source and target domain data are simi-
lar, through a minimization on the KL divergence of the pro-
jected instances between domains. However, they are either
based on kernel methods or regularization frameworks, rather
than exploring a deep architecture to learn feature represen-
tations for transfer learning. Different from previous works,
in this paper, our proposed TLDA is a supervised represen-
tation learning method based on deep learning, which takes
distance minimization between domains and label encoding
of the source domain into consideration.

6 Conclusion

In this paper, we proposed a supervised representation learn-
ing framework for transfer learning with deep autoencoders.
In this framework, the well known representation learning
model autoencoder is considered, and we extend it to a deeper
architecture. Indeed there are two layers for encoding, one
is for embedding, where we impose the KL divergence con-
strains to draw the two distributions of source and target do-
mains similar. The other is label layer, by which we can easily
incorporate the label information from source domain. Fi-
nally, we conduct a series of experiments on three real-world
image data sets, and all the results demonstrate the effective-
ness of the proposed methods.
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